GROUP 2 ELEMENTS - Beryllium to Barium

Introduction Group I (alkali metals) and Group 2 (alkaline earths) are known as **s-block** elements because their valence (bonding) electrons are in s orbitals.

	Be	Mg	Ca	Sr	Ba
Atomic Number	4	12	20	38	56
Electronic configuration	1s ² 2s ²	[Ne] 3s ²	[Ar] 4s ²	[Kr] 5s ²	[Xe] 6s ²

TRENDS IN PHYSICAL PROPERTIES

Atomic Radius Increases down each group

electrons in shells further from the nucleus

	Be	Mg	Ca	Sr	Ba
Atomic radius / nm	0.106	0.140	0.174	0.191	0.198

Ionic Size Increases down the group nuclear charge exceeds the electronic charge

The size of a positive ions is always less than the original atom because the nuclear charge exceeds the electronic charge.

		Be ²⁺	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺
loi	nic radius / nm	0.030	0.064	0.094	0.110	0.134

Melting PointsDecrease down each groupmetallic bonding gets weaker due to
increased size and lower charge density

Each atom contributes two electrons to the delocalised cloud. Melting points tend not to give a decent trend as crystalline structure affects melting points.

	Be	Mg	Ca	Sr	Ba
Melting point / °C	1283	650	850	770	710

TRENDS IN CHEMICAL PROPERTIES

Overall

undergo redox reactions involving the 'loss' of electrons to form 2+ ions

• reactivity increases down the Group due to the ease of cation formation

Reason • ionisation energies (I.E.) decrease down the group

1st I.E.	The energy required to remove one mole of electrons (to infinity) from one mole of gaseous atoms to form one mole of gaseous positive ions.					
	e.g. Mg (g)> Mg +(g) + e ⁻					
2nd I.E.	e.g. Mg +(g)> Mg ²⁺ (g) + e ⁻					

Knockhardy Publishing

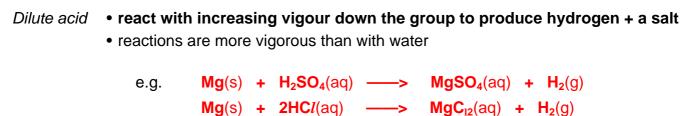
Ionisation Energy Decreases down the group

2

atomic size increases

Values for Group I are low because the electron has just gone into a new level and is shielded by filled inner levels. This makes them reactive.

Group 2 values are higher than their Group I equivalents due to the increased nuclear charge.


	Be	Mg	Ca	Sr	Ba
Ist I.E. / kJ mol ⁻¹	899	738	590	550	500
2nd I.E. / kJ mol ⁻¹	1800	1500	1100	1100	1000
3rd I.E. / kJ mol ⁻¹	14849	7733	4912	4120	3390

Large increase for 3rd I.E.

the electron is now being removed from a **shell nearer the nucleus** and there is **less shielding**.

CHEMICAL PROPERTIES OF THE ELEMENTS

Oxygen react with increasing vigour down the group Mg burns readily with a bright white flame +2 -20 0 **2MgO**(s) $2Mg(s) + O_2(g) -$ Ba burns readily with an apple-green flame $2Ba(s) + O_2(g) \longrightarrow 2BaO(s)$ In both cases metal is oxidised Oxidation No. increases from 0 to +2oxygen is reduced Oxidation No. decreases from 0 to -2 2e⁻ Mg²⁺ Mg + 2e⁻ – 0 **O**²⁻ Water react with increasing vigour down the group Mg reacts very slowly with cold water $Mg(s) + 2H_2O(l)$ $Mg(OH)_2(aq) + H_2(g)$ -> but reacts quickly with steam $Mg(s) + H_2O(g)$ -> $MgO(s) + H_2(g)$ Ba react with vigourously with cold water $Ba(OH)_2(aq) + H_2(q)$ $Ba(s) + 2H_2O(l)$ ->

ionically $Mg(s) + 2H^{+}(aq) - Mg^{2+}(aq) + H_{2}(q)$

OXIDES OF GROUP 2 ELEMENTS

 Properties
 • ionic solids; EXC. beryllium oxide which has covalent character

 • BeO CaO BaO
 beryllium oxide calcium oxide barium oxide
 MgO SrO
 magnesium oxide strontium oxide

 Reaction

with water Most Group 2 oxides react with water to produce the hydroxide

e.g. CaO(

 $CaO(s) + H_2O(l) \longrightarrow Ca(OH)_2(s)$

	BeO	MgO	CaO	SrO	BaO
Reactivity with water	NONE	reacts	reacts	reacts	reacts
Solubility of hydroxide g/100cm ³ of water	insoluble	sparingly	slightly	quite	very
approx. pH of 0.1M solution	-	10.4	12.5	13.0	13.1

Hydroxides • basic strength also increases down group

- this is because the solubility increases
- the metal ions get larger so charge density decreases
- there is a lower attraction between the OH⁻ ions and larger dipositive ions
- the ions will split away from each other more easily
- there will be a greater concentration of OH⁻ ions in water
- Uses
- Ca(OH)₂ used in agriculture to neutralise acid soils
 Ca(OH)₂(s) + 2H⁺ (aq) ----> Ca²⁺(aq) + 2H₂O(I)

 $Mg(OH)_2$ • used in toothpaste and indigestion tablets as an antacid

 $Mg(OH)_2(s) + 2H^+(aq) \longrightarrow Mg^{2+}(aq) + 2H_2O(l)$

• both the above are weak alkalis and not as caustic as sodium hydroxide

CARBONATES OF GROUP 2 ELEMENTS

Properties • insoluble in water

• undergo thermal decomposition to oxide and carbon dioxide

e.g. $MgCO_3(s) \longrightarrow MgO(s) + CO_2(g)$

· ease of decomposition decreases down the group

	MgCO ₃	CaCO ₃	SrCO ₃	BaCO ₃
Solubility (g/100cm ³ of water)	1.5 x 10 ⁻⁴	1.3 x 10 ⁻⁵	7.4 x 10 ⁻⁶	9.1 x 10 ⁻⁶
Decomposition temperature / °C	400	980	1280	1360

SULFATES OF GROUP 2 ELEMENTS

Sulphates • white crystalline solids

· solubility in water decreases down the Group

Salt	Ionic radius (M ²⁺) / nm	Hydration Enthalpy (M ²⁺) / kJ mol ⁻¹	Solubility moles/100g
MgSO ₄	0.064	-1891	3600×10^{-4}
CaSO ₄	0.094	-1562	11 x 10 ⁻⁴
SrSO ₄	0.110	-1413	0.62×10^{-4}
BaSO ₄	0.134	-1273	0.009×10^{-4}

- there is little change in the lattice enthalpy BUT
- as the cation gets larger the hydration enthalpy gets much smaller
- a larger cation has a lower charge density so is less attracted to water

Test for sulfates

• barium sulfate's high insolubility is the basis for a laboratory test for sulfates

Method - make up a solution of the compound to be tested

- acidify it with dilute hydrochloric (or nitric) acid *
- add a few drops of barium chloride solution
- white precipitate of barium sulfate conforms presence of sulfate ion

 $Ba^{2+}(aq) + SO_{4}^{2-}(aq)$ **BaSO**₄(s)

* adding acid prevents precipitation of other insoluble ions such as carbonate

Q.1 How is the high insolubility of barium sulfate made use of in hospitals?

(AQA)